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Nonlinear advective adjustment of a discontinuity in free-surface height under 
gravity and rotation is considered, using the method of contour dynamics. After 
linear wave-adjustment has set up an interior jet and boundary currents in a wide 
(9  one Rossby radius) channel, fluid surges down-channel on both walls, rather than 
only that wall supporting a down-channel Kelvin wave. A wedgelike intrusion of low 
potential vorticity fluid on this wall, and a noselike intrusion of such fluid on the 
opposite wall, serve to reverse the sign of relative vorticity in the pre-existing 
currents. For narrower channels, a coherent boundary-trapped structure of low 
potential vorticity fluid is ejected at one wall, and shoots ahead of its parent fluid. 
The initial tendency for the current to concentrate on the ‘right-hand’ wall (the one 
supporting a down-channel Kelvin wave in the northern hemisphere) is defeated as 
vorticity advection shifts the maximum to the left-hand side. Ultimately fluid 
washes downstream everywhere across even wide channels, leaving the linearly 
adjusted upstream condition as the final state. The time necessary for this to occur 
grows exponentially with channel width. The width of small-amplitude boundary 
currents in linear theory is equal to Rossby’s deformation radius, yet here we find 
that the width of the variation in velocity and potential vorticity fields deviates from 
this scale across a large region of space and time. Comparisons of the contour 
dynamics solutions, valid for small amplitude, and integration of the shallow-water 
equations a t  large amplitude, show great similarity. Boundary friction strongly 
modifies these results, producing fields more closely resembling the linear wave- 
adjusted state. Observed features include those suggestive of coastally trapped 
gravity currents. Analytical results for the evolution of vorticity fronts near 
boundaries are given in support of the numerical experiments. 

1. Introduction 
Rossby (1937, 1938) was the first investigator to consider in detail the adjustment 

to gravitational equilibrium of an unbounded rotating fluid, and now the general 
problem bears his name. Blumen’s (1972) extensive review addressed the general 
problem of agestrophic initial states. Gill (1976, 1982) explicitly considered the 
gravitational adjustment of a step discontinuity in surface height and examined the 
energetics of this adjustment. Starting with the linearized shallow-water equations, 
he derived both a wave equation and the expression for potential vorticity 
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conservation, which together revealed the evolution and structure of the geo- 
strophically adjusted state. Essentially this state consists of a jet centred on the 
original position of the height (and potential vorticity) discontinuity. Of the total 
potential energy lost from this region during the adjustment process, only one-third 
is converted into kinetic energy of the geostrophic jet. The remainder is lost as 
inertio-gravity waves (Poincart! waves), which move steadily outward from the 
initial discontinuity. This partition varies with the mix of Fourier components in the 
initial field (Killworth 1987 ; Middleton 1987). 

Gill (1976) also considered the related problem of geostrophic adjustment to a 
height discontinuity in the presence of boundaries which lie perpendioularly to that 
discontinuity. Such gravitational adjustment in a rotating channel (henceforth 
termed the ‘Gill adjustment problem’) involves not only the Poincar6 waves of the 
unbounded case, but also Kelvin waves trapped against each boundary. Combined 
Kelvin/Poincart! fronts move out from the initial discontinuity, setting up 
source-sink flows (in this case, boundary currents) in their wake (figure 1). The 
linearly adjusted jet is situated a t  the left-hand wall in the up-channel region of 
initially thicker fluid, crosses over a t  the position of the initial discontinuity, and is 
located on the right-hand wall down channel from that location (here ‘right’ and 
‘left ’ apply to an observer looking down the channel from the region of high surface 
elevation, in the northern hemisphere). The relative vorticity of the boundary 
currents is just that provided by the wave of depression moving upstream (which 
shortens planetary vortex lines, making negative vorticity) and the wave of 
elevation moving downstream (which stretches vortex lines to make positive 
vorticity). This idealization in which Kelvin waves establish pathways for drainage 
flows, is the basis of a wide variety of adjustment problems. The analogous 
determination of linear source-sink circulations by wave group-velocity arguments 
is the basis of a large variety of geophysical flow problems (e.g. internal waves and 
barotropic Rossby waves : Lighthill 1967 ; topographic shelf waves : Csanady 1976 ; 
topographic waves: Johnson 1985, Gill et al. 1986; boundary and equatorial Kelvin 
waves, and baroclinic Rossby waves : Kawase 1987). 

In the non-diffusive Gill adjustment problem, Kelvin waves of elevation and 
depression serve to flatten the down-channel pressure gradients which initially exist 
a t  each wall; for a geostrophically adjusted flow, no such gradients are possible, for 
they would imply flow through each wall. The constant values of surface height thus 
attained on each wall set a constant value for total down-channel mass flux at  any 
cross-section of the channel. 

This linear solution (henceforth termed the ‘Gill solution ’) to the adjustment 
problem will hold only so long as fluid excursions are very small, i.e. so long as 
potential vorticity is conserved everywhere in an Eulerian sense. However, once fluid 
has moved across the initial location of the discontinuity in height and potential 
vorticity, this linear conservation law is violated. Indeed, the potential vorticity field 
of the Gill solution will be of the wrong sign for those areas where particles have 
crossed the position of the initial discontinuity. The results of this sudden change are 
difficult to predict in detail. But we anticipate that the negative vorticity of the fluid 
approaching x = 0, if it were to overshoot in making its right-hand turn, would (with 
its boundary image) tend to self-advect down the left-hand wall. Conversely if a 
‘nose’ of fluid with negative vorticity were to  flood down the right-hand wall, its self 
advection with its boundary image would tend to slow its advance. One might argue 
that the new fluid will permanently carry on down the right-hand wall, with its 
maximum velocity shifted away from the boundary to express its negative vorticity. 
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FIGURE 1 .  Linear set-up of the geostrophically adjusted flow in a channel. Poincarh/Kelvin fronts 
move out from an initial discontinuity, setting up an antisymmetric pattern of boundary currents. 

But this resolution, to be permanent, would require a vortex sheet between the jet 
and the quiescent interior, positive vorticity for which there is no source. The 
possibility of a major change in flow path led us to develop numerical solutions for 
the vorticity dynamics of these advective changes. 

For the nonlinear (advectively driven) adjustment problem, we must specifically 
conserve potential vorticity for all fluid parcels. Here we divide the full adjustment 
problem into two distinct phases : the linear phase where Kelvin and Poincard fronts 
set up boundary and interior jets, and a much slower nonlinear phase where 
advection of fluid rearranges the initial pattern of potential vorticity. The separate 
treatment of these two phases presumes that the linear set-up is complete (i.e. the 
Kelvin and Poincard waves have moved infinitely far off from the origin) before the 
nonlinear adjustment begins. Such a timescale separation becomes more and more 
accurate as the amplitude of the initial step discontinuity becomes smaller. Wave 
steepening and breaking become unimportant in the same limit. Nonetheless, as will 
be shown later, the basic pattern of evolution holds, even for initial disturbances of 
finite amplitude. Since the nonlinear phase still entails a pattern of potential 
vorticity which is piecewise continuous, the ideal method of solution for small 
amplitudes is that of contour dynamics (Zabusky, Hughes & Roberts 1979), which 
has been employed here. 

The nonlinear adjustment problem with boundaries is relevant to  many physical 
situations in the oceans and atmosphere. A most obvious example is the ‘dam break’ 
problem for ocean straits, where the dynamical evolution of along-straight variations 
in pressure is sought. Localized mixing can create along-strait pressure gradients 
which will subsequently evolve, undergoing both gravitational and advective 
adjustment. For the atmosphere, the nonlinear adjustment problem bears con- 
siderable relevance to the evolution of alongshore variations in the height of the 
marine layer in the presence of a coastal mountain barrier, which has been studied 
at a variety of locations (e.g. Gill 1 9 7 7 ~ ;  Baines 1980; Mass & Albright 1987; 
Beardlsey et al. 1987; Dorman 1987; Hermann et al. 1989). Such alongshore 
variations in layer height, which can be set up initially by synoptic-scale dynamics, 
may propagate as Kelvin waves, steepen and break into bores, and, when the 
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variation in height is strong enough, take on the characteristics of a coastally 
trapped gravity current. The problem described in this communication, in the limit 
of infinite channel width, serves as a useful analogue to  this adjustment process. 

Certain wind-forced adjustments in the coastal ocean could also exhibit features 
similar to those reported here. A broad, long patch of alongshore wind, with negative 
curl (increasing wind strength offshore) and blowing in the direction that Kelvin 
waves propagate, would produce a convergence of fluid and hence a thickening of the 
mixed layer far out beyond the coastal boundary. Such a broad hump of coastal 
water would possess alongshore pressure gradients near the wall, due to  the forcing 
of Kelvin waves there. A boundary current would be established by those free waves 
moving out from the forcing region, which would serve to advect the wind-forced 
fluid along the coast into a region of higher ambient potential vorticity. This could 
produce results similar to those described here for the advective adjustment phase of 
the initially quiescent fluid near the ‘right-hand’ wall. 

In  this paper we emphasize the role of vorticity dynamics in setting the flow near 
boundaries. The linearly adjusted state represents one dynamical extreme for this 
problem, whereas steady hydraulics (e.g. Gill 1977 b )  represents another. The 
nonlinear dynamics considered here use the former as their starting point, and 
describe the approach toward the latter: a steady nonlinear flow in a rotating 
channel. This approach should be especially slow in those channels much wider than 
one deformation radius. In  between linear adjustment and steady hydraulics lies a 
relatively obscure dynamical regime, whose study may help bridge the gap between 
linear Kelvin waves (which move no fluid) and boundary-trapped gravity currents 
(whose wave and fluid fronts are coincident). Stern (1985, 1986, 1987a, 1987 b)  has 
been particularly active in the application of contour dynamics to nonlinear 
evolution, his applications centring on the growth of wavy disturbances on Gulf 
Stream jets, coastal currents, and large-scale eddies. 

Section 2 describes the set-up of the problem and the method of solution. Section 
3 describes the results of the contour dynamical technique for a range of channel 
widths. Section 4 compares these results with current theory, simpler cases, and 
larger amplitudes. Section 5 presents the conclusions. 

2. Equations of motion 
Consider a fluid of average depth H initially a t  rest relative to the frame of 

reference X of a rectilinear flat-bottomed channel of width 2W rotating with angular 
velocity $ f about a vertical axis. Take Cartesian axes Ox*y*z with Ox* vertical and 
Ox* along-channel. Denote the instantaneous surface elevation by y* and let the 
initial elevation be given by 

where 0 < e 4 1.  It is shown below that e gives the ratio of advective to wave 
timescales. Take the aspect ratio HIL of the flow to be sufficiently small that the 
subsequent motion of the fluid is described by the nonlinear shallow water equations, 
namely 

y* = H(1-esgnz), (2.1) 

u,+€(uu,+wUy)-v = -yx, (2.2) 

w,+E(U21x+wDy)+u = - y u ,  ( 2 . 3 )  

7 l t + ~ x + ~ y + E [ ( U r ) , + ( ~ 7 1 ) y l  = 0. (2.4) 

Here y is the non-dimensional scaled surface displacement given by y*  = H (  1 + ey), 
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t is the time scaled on f l ,  horizontal lengths are scaled on the Rossby radius, (gH)b/ f ,  
and (u, u) are the horizontal velocity components scaled on e(gH)i,  small compared to 
the long-wave speed. The boundary conditions on the flow are 

v = o  ( y = f W ,  t > O ) ,  (2.5) 

u = v = 0, 7 = -sgnz (Iyl < W ,  t = 0) ,  (2.6) 

u,v+o (IylGW, lzl+Co, t > O ) ,  (2.7) 
where W = fL/(gH)i is the channel half-width expressed in Rossby radii. The 
behaviour of system (2.2)-(2.7) is determined entirely by the two non-dimensional 
parameters E and W. Equations (2.2)-(2.4) can be arranged to show that the non- 
dimensional potential vorticity 

(2.8) 

is conserved following fluid particles. Here g = v, - uy is the vertical component of 
the relative vorticity. 

We consider system (2.2)-(2.7) for small E ,  yet with fully nonlinear evolution 
emerging over times of order The initial adjustment takes place over the inertial 
time scale f’ and is governed by (2.2)-(2.7) with the nonlinear terms absent. The 
conservation of Q then becomes the requirement that Q‘ retains its initial value, i.e. 

(2.9) 
to leading order 

Gill (1976) discussed fully the radiation of Poinear6 and Kelvin waves, presenting a 
closed-form solution of the complete time-dependent wave-adjustment problem. The 
present analysis is concerned with the subsequent advective adjustment and so 
requires only the final steady-state surface displacement a t  the walls from the wave 
problem. This follows directly from information propagation arguments. Introduce 
the advective time 7 = st,  the time taken for a particle to travel one Rossby radius 
(vs. t ,  the timescale for a gravity wave to travel the same distance). Then in the 
present limit (2.2), (2.3) give the geostrophic relations 

1 +Er ;  

1 +€?( 
Q’ = - 

c-7 = sgnx (t > 0). 

u=- ) ly ,  v = q , .  (2.10) 

The boundary condition (2.5) becomes 

7,=0 ( y = f W ,  7 >  O), (2.11) 

conservation of potential vorticity is given by 

Q,+ J(7 ,  &) = 0 (2.12) 

where J(7,  Q) = 7, Qy-yy Q, and Q is the leading-order potential vorticity, 

Q = 5-7 = V 2 q -  7> (2.13) 

where V2 is the two-dimensional Laplacian. The initial value for the nonlinear 
evolution of Q follows by noting that the wave-adjustment problem has a steady 
limit as t + 03 and so gives the limit as T + 0 of the advective problem. This is the two- 
step adjustment process referred to in § 1.  The scale separation assumes that vorticity 
advection does not produce small-scale features or, more significantly, large 
vorticities and strain rates, subsequently violating the quasi-geostrophic scaling. The 
self-consistency of the ‘slow manifold’ is in doubt as a general principle (Lorenz & 
Krishnamurthy 1987), yet here it can be verified a posteriori. 

(2.14) From (3.9), 
Q = sgnx (7 = 0). 
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The conditions required to close the 7,  Q problem are the values of 7 on the channel 
boundaries, constrained to be constants by (2.11). They follow by noting that only 
a Kelvin wave concentrated against the wall a t  y = - W (the right-hand wall) can 
propagate to x = - 00 and have constant values on y = &- W, contributing a steady 
current in the final state. Hence 

7 - -l+A+e-Y (1 4 x 4 t ) .  (2.15 a )  

Similarly considering the Kelvin wave concentrated on y = W (the left-hand wall) 
gives 

q - l+A-eY (1 4 -x 4 t ) .  (2.15b) 

The undetermined amplitudes A+,A-  of t'he waves are fixed by noting from (2.11) 
that (2.15a, b )  coincide on y = 

7 - -1+sechWe-Y (1 4 x 4 t ) ,  (2 .16~)  

~-1-sechWeY (l&--x4t), (2.16b) 

q = T t a n h W  ( y = f W ,  t + l ) ,  (2.17) 

coinciding with the results of the full wave analysis in Gill (1976, 1982). There is a 
net flux along the channel in the positive x-direction having a y-average down- 

U( W) = W-l tanh W, (2.18) 
channel flow 

which has a maximum value of unity for narrow channels and vanishes algebraically 
with increasing channel width. This flux is constant in time, owing to the striking 
ability of Kelvin waves to level the fluid at a rigid boundary. Deviations from level 
surfaces a t  boundaries are known to be important in the actual ocean, where they are 
associated with diffusive or strongly nonlinear effects and the presence of external 
stresses (Godfrey 1989). The nonlinear evolution here determines solely the 
redistribution of potential vorticity and fluid, while retaining the flux U. Note how 
E has been scaled out of the problem, leaving W as the only adjustable parameter. 
Hence for larger e ,  the speed of the nonlinear evolution is increased, but the resulting 
fields of surface height and velocity are identical to those obtained with smaller E .  

System (2.12)-(2.14), (2.17) gives a well-posed problem for the advective evolution 
of the flow, with the initial state given by the final state of the Gill problem. This 
wave-adjusted state follows directly by solving (2.13), (2.14), (2.17) a t  7 = 0, to give 
(see Appendix) 

Qo(x, Y) = sgn -x, (2.19) 

W. Thus 

qo(x, y) = - sinh y sech W+ sgn x - 1 + cosh y sech W i 

u&, y) = sech Wexp ( -  y sgn x) 
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is continuous across x = 0 so the term where a, = (m+k)z/W. By construction 
within brackets vanishes there, giving 

(2.23) 

Throughout the motion a particle retains its initial value of Q. Moreover, once the 
distribution of Q is known, the corresponding surface displacement follows by 
inverting (2.13) subject to the boundary conditions (2.17). Thus it is sufficient to 
follow the evolution of the bounding line between the two regions of differing Q, i.e. 
the potential vorticity front. 

Following this evolution is greatly simplified by considering the flow in a frame S’ 
with Cartesian axes Ox’y’z’ coincident with S a t  7 = 0, but translating along the 
channel at the y-average down-channel flow speed U(W), so that 

(XI,  y/, 2 ’ )  = (x- U(W) 7, y, 2 ) .  (2.24) 

Introduce Q,, the deviation a t  any time 7 of Q from the value obtained by simply 
advecting the initial value Qo at speed U(W), i.e. 

or 

The conservation of Q in S is given by 

Q , + S ( T - ~ ( W ~ Y ‘ , Q )  = 0. (2.26) 

Typical regions involved are sketched in figure 2. Figure 2(a)  shows the advected, 
unaltered initial Q, with the dividing line C, between differing values given by 
x = U(W) 7. Figure 2 ( b )  gives a hypothetical value of Q a t  time 7 with C ,  as the 
separatrix. Figure 2(c) illustrates the difference Q1 = Q-Qo, non-zero solely in the 
shaded regions, where it equals 2. Since there is no net flux across the moving line 
C,, the areas of positive and negative Q, are equal. The total signed area of Q, 
vanishes. This furnishes a check on the global accuracy of the numerical methods 
discussed later. The division of the problem into Qo and Q, parts is in no way a 
perturbation expansion, but rather is aimed at maximal computational efficiency. 

Now consider the surface elevation corresponding to Q1. Analogously to (2.24), 
introduce 

so 

Then (2.13), (2.14), (2.17) become 

%(XtY, 7) = r ( x ,  y, 7 )  -ro(x- U(W) 7 ,  Y)? 

Vl(X’, Y’, 7) = r ( x / ,  y’, 7 )  -r,(x’, y’). (2.27) 

(2.28) 

(2.29) 

Q, = O  ( 7 = 0 ) .  (2.30) 

Note how advecting the initial field of Q,, qo (and corresponding u,, v,) effectively 
shifts the Gill solution to a more efficient location, where the deviations from i t  
(Q,, q,, u,, vl) will be smallest. This is a matter of convenience rather than necessity. 

Here and in the remainder of this section i t  is no longer necessary to  distinguish 
between the dashed and undashed frames as (2.28), (2.29) are independent of 7 .  The 
compact support of Q1 means that this system is ideally suited for computation by 
contour dynamics. At a given instant (2.28) is inverted using the homogeneous 

16 FLM 205 
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FIUURE 2. The various potential vorticity distributions. (a) The advected unaltered initial 
distribution Qo with values separated by the straight line Co at x = U(W)7. ( b )  A hypothetical 
distribution Q a t  a later time 7 > 0. The separatrix is the curved line C, joining A and B.  (c) The 
difference Q, = &-&,, non-zero in the shaded regions alone where it takes the values k2. 

boundary conditions (2.29) to give gl, hence g and the velocities a t  any point in the 
channel. In particular the velocities of particles on the line separating the two values 
of Q are known. Thus the position of this line can be advanced with time, a new field 
of Q1 obtained and so on. 

It remains to discuss the inversion of (2.28), (2.29). Let G(z,y,&y) be the Green 
function for (2.28), (2.29) so G satisfies 

V2G - G = S(6) S(,U), (2.31) 

G = O  (y=+W).  (2.32) 

(2.33) Then 

Taking the gradient of (2.33) and using Green’s theorem in the plane gives the 
velocity components in terms of a single path integral, i.e. 

(u1, v1) (X’ Y) = 2 

41(G Y) = Q l ( k - 9  P )  G(Z7 Y9 6’ P )  dtdy .  s 
G(x, Y, ‘ 5 P )  (d&, dP), (2.34) 

provided the boundary of Q1 is described so that low values of Q1 lie to the right. 
Particle velocities in the frame S’ are then given by 

( u , v )  = (u,+u,-U(W),w,+v,). (2.35) 

A number of forms can be found for G. Direct solution of (2.31), (2.32) by Fourier 

f2Q1 

where K 2  = k2 + 1.  Although valid for all W this form is cumbersome for computation 
and an equivalent expression can be derived by considering images of a free-surface 
point vortex. This gives 

1 *  
G ( x , Y , ~ , Y )  = - E K , { [ ( ~ - ~ ) ~ + ( Y - - + + ~ W ) ~ I ~ }  

2r n=-* 
-KO([  (z - 5)2 + (y + y + 2 W + 4nW) 73“). (2.37) 

Series (2.37) converges exponentially for all non-zero W ,  converging most rapidly for 



Nonlinear Rossby adjustment i n  a channel 477 

wide channels and least rapidly for narrow channels. For extremely narrow channels, 
W < 1 ,  free-surface deformation is unimportant, (2.31) reduces to the standard 
Laplacian, and G gives the field associated with a point charge between grounded 
plates, having the simple form 

G(z:,y,6,/4 = logltanh{"z-k) + ~ ( Y - - E c ~ l / w ) l + ~ ~ W ) .  (2.38) 

The exponential behaviour of the Green function makes the free-surface problem far 
more local than the logarithmic tail of point vortices in a two-dimensional fluid. 

The integral (2.34) was computed for each of 1000 points around the contour a t  
each timestep (AT = 0.25 for wide channels and 0.05 for narrower channels) using the 
CRAY X-MP. Seven terms in the series (2.37) (n = - 3  to n = 3 )  were sufficient to 
evaluate G for all channel widths. The Gill solution velocities uo, wo were evaluated 
with the first ten terms of the series (2 .21) ,  (2 .22) .  After computation of uo, wo, ul, w1 
the points were advanced using a fourth-order Runge-Kutta scheme. Points were 
respaced evenly along the contour line separating regions of non-zero and zero Q1 
after each timestep, to prevent the development of sparse regions with few points. 
Spline interpolation was utilized in this procedure for cases with 2W > 1, and linear 
interpolation for 2W < 1 (where contours approached the walls too closely for spline 
interpolation to be useful). Integrals for the contour segments adjacent to the point 
whose velocity was being computed (which contain a singularity), and integrals for 
contour segments adjacent to walls (where the slope of the contour changes 
suddenly) were computed using appropriate analytical expressions. Elsewhere the 
integral for each contour segment was approximated using the Euler method (as in 
Zabusky et al. 1979). 

Global error was calculated as the deviation of the total signed error of Q1 from 
zero, normalized by 4w2 (the width..of the channel squared). Values of global error 
ranged from 2.2 x to  2.8 x lop2 at the end of each run, the largest value occurring 
for the longest run (T = 7 5 )  of the channel of width 2W = 10. 

3. Results 
Since W ,  the channel half-width in Rossby radii, is the only free parameter in the 

scaled nonlinear problem, it is sufficient to consider a range of channel widths to 
completely characterize the slow nonlinear evolution. Here we consider channel 
widths in the range 0.2-25.0. 

3.1. Wide channels ( 2  W = 25, 2 W = 10) 
For W b 1 frames S and s' coincide for times T < W. The two walls are independent 
and apart from Rossby radius-wide boundary layers near x = 0, 17 is unaltered, i.e. 

T~ N - 1 +2e-(yfw) (z b I), ( 3 . 1 ~ )  

T o  N - 1 -2f9-w' (-x b I ) ,  ( 3 . l b )  

qo N -1+e-' (x > 0 {Iyl-W b l ) ,  ( 3 . 2 ~ )  

rl0 - l-ez (z < 0 (1yl-W % 1 ) .  (3 .2b)  

The cross-channel integral of down-channel flux has the asymptotic value of 
2. Figure 3 gives initial contours of surface elevation vo, and so streamlines, for 
2W = 25. Fluid drains from the region of high surface elevation in a narrow current 
against the wall at y = W ,  crosses the channel in a current straddling x = 0 and con- 

16-2 
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W v = o  - w 

x = o  

k- 25A 1 
FIGIJRE 3. Contours of the wave-adjusted free-surface elevation qo from (2.20) for 2W = 25, a 
channel of width 25 Rossby radii. Fluid drains from the region of high surface elevation in a narrow 
current against the wall a t  IJ = W ,  crosses the channel in a current straddling z = 0, and continues 
into the low region along the wall a t  y = - W. These contours give streamlines of the flow before 
the further advective adjustment. 

tinues into the low region along the wall at y = - W. The velocity is perpendicular to 
the gradient of potential vorticity everywhere except in the two small turning regions 
where the cross-stream flow leaves and returns to the walls, i.e. x - O ( l ) ,  {Iyl- w) - 
O(1).  Initially it is in these regions alone that further advective adjustments take 
place. The direction of the first deviation of the front of Q is given by the wave 
adjusted velocity u,(O,y) from (2.23), although rapidly, by times 7-W-’  4 1, the 
advection of relative vorticity will become equally important. Such initial deviations 
are confined to narrow boundary layers against each wall. The adjustments in the 
two regions are independent a t  this stage, and between them they give the 
prototypes required to discuss all possible adjustments of narrow currents abutting 
isolated walls. 

By the t,ime r - 5 ,  nonlinear evolution of the vorticity front has produced a thin 
wedge of lower potential vorticity fluid (henceforth termed ‘new fluid’) on the right- 
hand wall, and a Gaussian-shaped nose of that fluid on the left-hand wall (figure 4). 
The cross-channel thickness of the right-hand wedge varies uniformly, and is less 
than one Rossby radius wide (Ay < 1 )  over much of its length. The left-hand nose is 
considerably thicker over its length. In  the vicinity of the initial discontinuity, the 
intrusion of new fluid is greater than one Rossby radius wide on both sides of the 
channel. Both the wedge and the nose lengthen with time in the down-channel 
direction; as a result, the boundary between the fluids aligns nearly parallel to the 
wall on the right-hand side. The left-hand nose lengthens in a fashion which appears 
to preserve its shape near the head. At the head itself, the boundary lies nearly 
perpendicular to the left-hand wall (angle of N +7t a t  7 = 5 ) .  
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I 
12.5h 

I x' = 0 

(7 = 20) 

FIGURE 4. Evolution of the potential vorticity front in a channel of width 2W = 25, for times 
7 = 0.25, 5, 10, 15, 20. The front is plotted in the moving frame S', which translates downstream 
a t  a rate of U = 0.08. A dashed line indicates the position of the initial height discontinuity 
(5 = 0) relative to the front at T = 20. 
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FIGURE 5. Progression of the potential vorticity front along left- and right-hand walls in the 
channel of width 2W = 25. 

The leading tip of the right-hand wedge of new fluid moves at a rate nearly 
identical with the velocity of the Gill solutions for the linear problem - that is, 
a t  a rate of 2 (figure 5 ) .  The left-hand nose advances a t  the considerably slower 
rate of - 0.25. As both sides progress, deformation of the interior front penetrates 
further inward from the left-hand wall. By r - 20, the influence of the left-hand wall 
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FIQURE 6. Evolution of the velocity field in a channel of width 2W = 25 for times r = 5 ,  10, 20. 
Velocity vectors are plotted in the moving frame S ,  as in figure 4. 

is evident all the way out to the centre of the channel. At this point the moving 
coordinate frame s' has advanced a distance of Ax = 1.6 relative to the origin, but 
an interior section of the fluid front has not yet moved downstream from its initial 
location. 

Velocity vectors for this sequence of frames exhibit how the boundary flow on the 
left-hand wall has crept over the initial step location with the nose of new fluid, 
doubling back at an increasingly distant location to rejoin with the linearly adjusted 
interior flow (figure 6). The effect of the wedge of new fluid on the right-hand wall is 
not so obvious in this figure. However, a cross-channel profile of down-channel 
velocity a t  x = 0 (figure 7) clearly shows how the penetration of new fluid sharply 
reverses the sign of relative vorticity in the vicinity of the right-hand wall, from its 
linearly adjusted positive value to a new, negative value. As a natural result of the 
sign-change in relative vorticity, the jet of highest velocity appears everywhere to lie 
on the boundary between old and new fluid. 

The conservation of potential vorticity following fluid columns readily explains 
these results. Initial linear adjustment stretched fluid columns on the right-hand wall 
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FIGURE 7. (a) Cross-channel profiles of downstream velocity u(z’, y’) at T = 25 for the several 
locations along the channel oswidth 2W = 25 (2’ = 0, f6.25, & 12.5) marked in ( b ) .  The position 
of the potential vorticity front at 7 = 25 is shown for comparison. 

everywhere downstream from the origin, producing a velocity profile with positive 
relative vorticity. Once the new fluid enters this downstream, right-hand region, i t  
must acquire negative relative vorticity to the extent that all fluid columns of this 
new fluid are compressed from their initial height. Hence the vorticity advection 
shifts the velocity maximum away from the right-hand wall, towards the left-hand 
side of the channel. 

The surface-height field corresponding to the velocity field at  T = 20 (figure 8) 
exhibits especially the intrusion of new fluid on the left-hand wall, and the 
deformation of the interior pattern between that wall and the centre of the channel. 
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FIGURE 8. Evolution of the surface-height field in a channel of width 2W = 25 for times 7 = 5 ,  10, 
20. Height contours are plotted in the moving frame S‘, as in figures 4 and 6. Kumerical jitter 
results from aliasing effect of points used to represent the potential vorticity front as they sweep 
through the grid of points used to construct the height field. 

One is naturally drawn to ask whether the information from either wall will 
ultimately affect the dynamics all across the channel, i.e. whether the two walls will 
‘communicate ’ with each other, and what the ultimate velocity and surface-height 
fields must be. Simulations beyond r = 20 are of course necessary to address this 
issue. An extended run of the model with 2W = 25 is problematical, insofar as the 
(evenly respaced) points around the contour become widely separated given 
sufficient time, an effect which can be overcome only a t  considerable computational 
cost. However, an extended run with a slightly narrower channel, 2W = 10, clearly 
illustrates downstream translation of the fluid front from its original location a t  
x = 0 everywhere across the channel by r = 25 (figure 9a)  The time required for such 
cross-channel communication to prevail appears to be a monotonically increasing 
function of channel width, as described in $4.3. By 7 N 50, the fluid front is 
everywhere displaced further than one Rossby radius downstream from its initial 
location. A compressed view of the front reveals the persistence of the noselike 
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FIGURE 9. (a) Evolution of the potential vorticity front in a channel of width 2W = 10 for times 
T = 0.25,25, 50, 75. Position of the front is plotted in the fixed frame S', illustrating the complete 
detachment of the front from the position of the initial height discontinuity. ( b )  Corresponding 
cross-channel sections of free-surface height ~ ( x ,  y) for x = 0, illustrating the evolution from the 
antisymmetric profile a t  7 - 0 to the upstream height profile by T = 75. 
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- 101 1 
FIGURE 10. Evolution of the potential vorticity front in a channel of width 2W = 10 for times 
T = 5, 10, 15, 20. The front is plotted in the moving frame S’, and the %’-axis is compressed to 
illustrate the down-channel structure of the front. 

intrusion on the left-hand wall and the wedgelike intrusion on the right for times up 
to 7 = 20 (figure 10). 

Evolution towards the final shape of the surface-height field is best illustrated by 
a time series of height cross-sections for the 2W = 10 channel (figure 9 b ) .  Consider the 
initial location of the height discontinuity (x = 0). At 7 = 0 (linearly adjusted state) 
the surface height has an antisymmetric form. The height near both walls increases 
dramatically with the intrusion of new fluid, though nowhere does it exceed the 
constant value on the right-hand wall. Eventually the height rises to the level of the 
right-hand wall all across the channel, except for the boundary region against the 
left-hand wall. By T - 75, the cross-section has in fact assumed nearly the same 
profile as was present far upstream of the initial height discontinuity ; fluid has 
everywhere ‘washed downstream ’ beyond x = 0 in the channel. Apparently, for 
sufficiently large 7, there is a value of x beyond which all new fluid has washed 
downstream, leaving the left-hand jet as the final state. 

3.2. Intermediate width channel (2W = 5 )  
The nonlinear evolution of a channel only 5 Rossby radii wide proceeds differently 
from the wide channel cases. Initially the evolution is similar ; a wedge of new fluid 
penetrates on the right-hand wall, and a nose of new fluid penetrates on the left-hand 
wall. However, the two walls rapidly communicate with each other and a new 
pattern emerges. By 7 - 5 the linear interior solution holds nowhere across the 
channel, and fluid has everywhere washed downstream a distance of at least one 
Rossby radius (figure 11 a). By 7 - 10 a new effect appears; the right-hand wedge has 
begun to pinch off from the main body of the new fluid (figure 11 b ) .  The front of new 
fluid on the right-hand wall initially moves along that wall a t  a rate close to the 
wave-adjusted boundary current speed (u - 2, as in the wide channel case), whereas 
the front on the left-hand wall moves faster than for the wide channel case, initially 
a t  a rate of - 0.5 (figure 12a). This faster rate cannot be attributed simply to 
penetration of the Gill solution from the right-hand wall. For x % 0, the Gill solution 
a t  y = - W is only u = 0.013 for this intermediate width channel. Hence, nonlinear 
effects (e.g. faster self-advection of the nose, due to closer proximity of its image) 
must be responsible for the difference. By 7 - 20 the rate of advance has slowed 
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FIGURE 11. (a) Evolution of the potential vorticity front in a channel of width 2W = 5 for times 
7 = 0.25, 5, 10, 15, 20. The front is plotted in the moving coordinate system S', which translates 
downstream a t  a rate U = 0.4. A dashed line indicates the position of x = 0 at 7 = 5; the position 
z = 0 is outside the domain of the figure for subsequent times. ( b )  The 2'-axis is compressed to 
illustrate the pinching-off of fluid on the right-hand wall. A dashed line indicates the position of 
2 = 0 a t  7 = 20. 
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FIGURE 12. Progression of the potential vorticity front along left- and right-hand wells for: (a) the 
channel of width 2W = 5;  ( b )  the channel of width 2W = 1. 

appreciably, approaching that of the mean down-channel flow speed U ( N 0.4); hence 
the left-hand portion of the contour approaches a steady form in the moving frame 
s'. 

3.3. Narrow channel (2W = I )  
For a channel which is only one Rossby radius wide, the communication between 
walls is especially rapid, and the fluid front has shifted downstream across the entire 
channel by T N 2 (figure 13a). On the right-hand wall, the wedge of new fluid pinches 
off and moves ahead, as a coherent feature, from the rest of the new fluid mass. The 
left-hand intrusion no longer has a noselike shape as in the wider channels, but rather 
assumes a linear shape which joins with the central portion of the fluid front. Indeed, 
by T = 8 there results a straight front, tilted at  0.24 radians with respect to the cross- 
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FIGURE 13. ( a )  Evolution of the potential vorticity front in a channel of width 2W = 1 for times 
T = 0.05, 2 ,  4, 6, 8. The front is plotted in the moving frame S', which translates downstream at 
a rate U = 0.93. The position x = 0 lies outside of the domain of this figure for T = 2 and subsequent 
times. (b )  The 2'-axis is compressed t o  illustrate the pinching-off of fluid on the right-hand wall, and 
its subsequent travel ahead of the remaining potential vorticity front. A dashed line indicates the 
position of x = 0 at T = 20. 

channel axis, which moves down-channel a t  nearly the speed of the translating 
coordinate system S ( U  - 0.93 in this case). A compressed view of the front (figure 
13b) illustrates the coherent structure of pinched-off fluid on the right-hand 
boundary, which moves ahead of the straight cross-channel front a t  a rate of 0.48 in 
8' (in the 'fixed' frame S this is u = 1.4; see figure 12b).  The coherent structure is 
nearly fore-aft symmetric; asymmetry is due to the long, thin tail connecting this 
part of the fluid front to the linear cross-channel section. 

Velocity vectors drawn in the fixed coordinate system S for a region far 
downstream from the initial discontinuity (x = 9.5 to 10.5) illustrate the reversal in 
relative vorticit'y which occurs all across the channel once the new fluid has washed 
completely past the channel interior (figure 14). As with the wider channels, the 
down-channel profile of height and velocity is ultimately replaced by the upstream 
condition, as the new fluid is washed downstream. 

Certain features of the narrow channel case do not conform to a Rossby radius 
scale. In  particular, the coherent structure of new fluid on the right-hand wall is only - 5 % of the Rossby radius in width. However, the characteristic alongshore length 
of this feature is close to the Rossby radius scale, being in the range Ax - 1-2. After 
the transients have carried downstream, the final state of flow establishes the Rossb  
radius as the dominant width scale, yet with the velocity maximum having moved 
from the right-hand wall to the left. 

3.4. Very narrow channel (2W = 0.2) 
A t  this very narrow limit, the mean translation speed U closely approximates its 
asymptotic value of 1. The majority of the surface height contrast has been cancelled 
by waves of almost constant cross-stream properties and equal and opposite 
amplitudes travelling upstream and downstream. While the Gill solution for down- 
channel flow is nearly constant across the channel, a wedge of new fluid still manages 
to surge ahead of the mean flow and pinch off into a coherent structure (figure 15). 
A compressed view of the coherent feature reveals a blunt nose a t  its head (resolved 
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FIGURE 14. Velocity field between x = 9.5 and 10.5 in the narrow channel (fixed coordinate system 
8)  for 7 = 5 ,  10, 15. The potential vorticity front passes through a t  T - 10, reversing the sign of 
relative vorticity across the channel. - 0.2,l-H 
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FIGURE 15. Evolution of the potential vorticity front in a channel of width 2W = 0.2 for times 
7 = 2.5,5.0,7.5. The front is plotted in the moving frame S', which translates downstream a t  a rate 
u = 0.99. 

FIGURE 16. Evolution of the potential vorticity front for a channel of width 2W = 0.2 as in figure 
15, but with the z'-axis compressed to illustrate the pinching-off and propagation of a blunt-nosed 
coherent feature. 

with 9 points at r = 7.5 in our simulation), as compared to the sharp wedge of the 
wider channel cases compare figures 16 and 13). Again note the cross-channel scale 
of this feature is considerably smaller (by a factor of 0.005) than one Rossby radius. 

As with the case 2W = 1, the main cross-channel section of the fluid front is a 
nearly straight line, rotated in a negative sense with respect to the cross channel axis 
(0.070 radians by r = 7.5). This section translates downstream at  a rate U - 0.99. 
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4. Discussion 
4.1. Evolution of wedges of uniform potential vorticity fluid 

A more thorough understanding of the wide channel evolution results from 
analytically examining the near- boundary behaviour of isolated wedges of fluid. 
Such wedges serve as idealizations of the frontal behaviour at left- and right-hand 
walls in the wide channel before cross-channel communication is complete. Consider 
the isolated wedge of uniform potential vorticity fluid and its image shown in figure 
17. The induced velocity a t  a point which lies on the fluid front a t  a distance r from 
the wall can be expressed as: 

where u , u  are the velocities parallel and normal to the wall, AQ is the difference 
between the potential vorticity inside the wedge and that of the ambient fluid, 6' is 
the angle at  which the front intersects the wall, and q, r ,  s are as shown in the figure. 
Note how the region of higher potential vorticity is on the right for the path used to 
evaluate the contour integral. 

Ideally we seek a closed form expression for each of these integrals. For the definite 
integrals we may use: 

(4.2) JyKo[ (a2  +P2)i] dP = &e-lal. 

However, there is no simple closed form available (to our knowledge) for the 
corresponding indefinite integrals with r ,  s, q as limits. Here we must appeal to the 
limit of small r ,  noting that 

The utility of this approximation lies in the fact that 

Ko(r)+-lnr as r + 0 .  (4-3) 

In [(a2 + b2)i]  db = t [ r  In (r2 + 2) - 2r + 2a arctan ( r /u ) ] .  (4.4) 

In the limit of T = 0 (the tip of the wedge), we have the exact expression: 

u = -~AQ(C0s8-1), u = 0. (4.5) 

For the case of the right-hand wedge in the channel, A&=-2, and so the 
corresponding expression for an isolated wedge is 

u = cose-i. (4.6) 

U = i-cose. (4.7) 

Behaviour of a left-hand wedge is identical to that of a right-hand wedge with the 
sign of AQ reversed: 

Hence for small but non-zero 8, the right-hand wedge will, with its image, tend to 
propagate in the up-channel direction. To this tendency must be added the 
underlying velocity of the Gill solution (which is the structural feature distinguishing 
the present problem from other researches of wall jets studied with contour 
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FIGURE 17. Parameters for an idealized wedge of constant potential vorticity in contact with a 
right-hand wall, and its image. 

dynamics, e.g. Stern 1986). The net result, figure 5 ,  is that the thin right-hand wedge 
of fluid moves a t  just under the velocity of the Gill solution, which is u = 2. 
Conversely the left-hand wedge will self-propagate in the down-channel direction, 
initially at maximal speed, for there 8 = in. It can further be shown, using (4.1), (4.2) 
with the approximation of (4.3), (4.4), that for small but non-zero r / a  on a right-hand 
wedge with AQ < 0, 

au av  -<<, - < 0 .  
ar ar 

Conversely, for a left-hand wedge 

au av 
- > 0 ,  ->>. 
ar ar 

These results clearly imply that a right-hand wedge with AQ < 0 will tend to 
rarefy, whereas the corresponding left-hand wedge will steepen. This is precisely the 
result observed in the evolution of the narrow wedge and broad nose in the wide 
channel run, despite the background shear of the Gill solution. The tendencies may 
be verified qualitatively by sketching the velocity vectors a t  a point on the wedge, 
owing to the closest image nodes. These will tend to rarefy or steepen according to 
the rule above. A further check on the analytical result is provided by a numerical 
run of the corresponding wedges, with the Gill velocity removed. The respective 
rarefaction and steepening are both evident in figure 18. 

4.2. Application of the long-wave equation 
Stern (1985) showed how the behaviour of potential vorticity fronts can sometimes 
be inferred using the long-wave equation : 

aL ah -+ c(L) - = 0, a7 ax 
where L is the y-coordinate (the distance from the boundary) of the point of interest 
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FIGURE 18. Evolution of isolated wedges of negative potential vorticity against : ( a )  right-hand 
and (6) left-hand walls. Rarefaction and steepening are observed in the respective cases. 

on a potential vorticity front. First, note that if L(x, t )  is slowly varying in x, we can 
approximate v for the front using 

This becomes the long-wave equation if we can make the substitution 

(4.10) 

Stern (1986) showed that for a front at a distance L(x,  t )  from the boundary, the 

(4.11) 
induced velocities are : 

u = - $ A s (  1 + e P L  - 2ePL), 

whence 

aL 
ax 

v =  -tA&-(l-e-”), 

c(L) = + A&(ePL - e-2L). 

(4.12) 

(4.13) 
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Now, for the case of a channel, where all images must be considered, the 
corresponding expressions are 

OD 

= - gAQ C (e-14nWI + e-l4nW+2LI - 2e-14nWfLI ) 7  (4.14) 
n--m 

so that 

(4.15) 

To look at wave steepening, consider that 

For our case of a right-hand wedge with AQ < 0, (4.17) indicates that 

ac 
aL 
- < 0 for small L,  large W, 

a C  
- > 0 for sufficiently small W. 
aL 

Hence a right-hand intrusion in a wide channel would be expected to rarefy, 
whereas such an intrusion in a sufficiently narrow channel is expected to steepen. 
This in fact is the observed behaviour for the leading edge of the pinched-off quantity 
of fluid on the right-hand wall in the narrow (2W = 1) channel case, versus the very 
narrow (2W = 0.2) channel. The former retains a thin wedge at its leading tip, 
whereas the latter steepens into a blunt nose (compare figures 13 and 16). Note also 
that the shear of the Gill solution is small across the pinched-off fluid in these cases, 
and hence not a major perturbation to the u, v of (4.14), (4.15). 

For very wide channels, the limit of the Gill solution is simply 

uGill = AQe-L. (4.18) 

When this flow is added to the large-W limit for u in (4.14), the sign of c(L) changes 
from negative to positive, but the implied rarefaction still obtains. For a large-scale 
perturbation on the front in the centre of a very wide channel, application of (4.10) 
(interchanging 2- and y-directions) without including the interior Gill solution yields 
a non-zero value for c(M), where M represents the distance from the front to the 
y’-axis. However, inclusion of the Gill solution, which is centred on the y’-axis, 
cancels out this propagation tendency, yielding 

c(M) = 0. (4.19) 

This serves to re-emphasize how the placement of the y’-axis for the Gill solution is 
completely arbitrary ; were it not, the value of c(M) would be dependent upon such 
placement. Further, the exact cancellation of the relevant contour- and Gill- 
contributions reminds us that a t  any time the flow field (and surface displacement) 
far away from the boundaries is simply that obtained by linear geostrophic 
adjustment of a line of surface discontinuity coinciding with the Q front. 
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4.3. Processes as a function width 
Both left- and right-hand sides of the channel exhibit considerably different 
behaviour in very wide versus narrow cases. Overall, the left-hand wedge advances 
furthest with respect to the central portion of the front in the wide channel case, 
whereas the right-hand wedge pinches off from the central portion most quickly in 
the very narrow channel case. These effects are a function of the strength of 
communication possible between the two walls, and the degree of influence of 
rotation on the dynamics. The similarity among the initial evolution of the very wide 
(25h and 1OA) and intermediate width (5h) channels suggests that, given sufficient 
time, the right-hand wedge may pinch off and the central region of the channel will 
come up to speed with the left-hand wedge. If this reasoning is correct , then we have 
established that at any finite value of x the high potential vorticity fluid will 
eventually all have washed down the channel. This strongly suggests that the low 
potential vorticity, ‘left-hand jet ’ of the upstream region will eventually propagate 
itself down the channel. In the case of the very narrow channel, results should be 
similar to those which would have been obtained for a non-rotating channel. In fact 
the ejected mass of fluid, with its noselike leading edge, bears at least a superficial 
resemblance to the exact, permanent form elliptical eddies that propagate along 
walls in the rigid lid case (Saffman & Tanveer 1982). 

The time required for the high potential vorticity fluid to wash down the channel 
increases rapidly as a function of channel width. As a useful diagnostic of this 
tendency, we calculated the observed time 7’ at which the most upstream portion of 
the high potential vorticity fluid had advanced at  least one deformation radius 
downstream from its initial location. For widths 2W = 0..2, 1.0, 5.0 and 10.0, 
observed values of 7’ were approximately 1.01, 1.1, 5.0 and 50, respectively. This 
roughly exponential dependence of 7‘ on 2W suggests a value well in excess of 
r’ = 1000 for 2W = 25. Indeed, such downstream advancement was not observed for 
the considerably shorter run of the 2W = 25 case described in $3.1. However, a longer 
run was attempted in which the right-hand wedge was not allowed to advance 
beyond x’ = 50, to retain a sufficient density of points in the channel interior. Results 
indicate that the contour evolves into a single-lobed structure, as it did for the 2W 
= 10 case (compare figures 19 and 9a). The left-hand side of this structure moves 
continually toward the right-hand side of the channel. Ultimately it is expected that, 
as for narrower channels, the lobe will move close enough to the right-hand wall for 
translation beyond the line x = 0 to occur. 

It is significant to note that such steady solutions as are apparent in the narrower 
channels do not involve a single pattern which translates at constant speed. Rather, 
there exist both the central portion of the front and its associated flow pattern, which 
translate downstream a t  uniform velocity, and the coherent mass of lower potential 
vorticity fluid, which translates at  a far greater velocity. This remarkable ejection of 
fluid appears to be a necessary step in the set-up of steady down-channel flow, and 
does not repeat within the time period of any of these simulations. It is conceivable 
that no such steady central pattern can exist for the wide channel case, until such 
time as this ejection on the right-hand wall occurs. 

Stern (1986) examined the evolution of a nose of low potential vorticity fluid 
connected to a tail of uniform width against an isolated wall. He found the front 
separating the two fluid regions eventually deforms such that ambient fluid is 
engulfed by the nose. While this effect is quickest for a narrow fluid tail (e.g. within 
7 = 12 for width 0.5h), it is possible that such engulfment could occur (albeit more 
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FIQURE 19. Evolution of the central portion of the potential vorticity front for a channel of width 
2W = 25 for T = 0.25, 7 5 ,  150, 225. The front is plotted in the fixed frame S, illustrating the long- 
time behaviour of the front near the origin z = 0. 

slowly) for our considerably wider left-hand intrusion in the widest channel case. The 
communication between channel walls (which continues to deform the tail even at 
r = 225), may ultimately prevent this, however. The fact that such engulfment did 
not occur in any of the narrower channels probably results from the strong cross- 
channel communication in these cases, and consequent failure to form a nose on the 
left-hand wall. In  the limit of infinite channel width, where cross-channel 
communication and consequent washout are prohibited, such effects might become 
evident as the left-hand nose moves ever further beyond the stationary central 
portion of the contour. 

4.4. Self-advection and down-channel J1ux 
In the widest channel case, the left-hand nose moves along the wall in a manner not 
attributable to inertial overshoot alone. Rather, the nose of uniform potential 
vorticity fluid behaves in a manner consistent with the self-advection of a point 
vortex of negative sign near a wall. This effect was formalized in (4.7) for a wedge of 
uniform potential vorticity fluid against an isolated wall. Considering a mean angle 
of -+IT of the nose within 1A of its leading tip (see figure a), (4.7) suggests a self- 
advection velocity of 0.29. This compares favourably with the observed advection 
rate of 0.25, despite the curvature of the actual contour relative to a straight wedge. 
Hence, while inertial overshoot serves initially to create a nose of low potential 
vorticity fluid on the left-hand wall, it is vortex self-advection which best explains 
the persistent creep of that fluid along the wall. 

The possiblity of sustained self-advection of new (low potential vorticity) fluid 
down-channel on the left-hand wall suggests a significant flux of new fluid in that 
direction, relative to the amount streaming down-channel on the right-hand wall. 
Consider the cross-channel integral of down-channel flux in either half of the channel : 

= u ( x ,  y) dy = r ( x ,  W )  -r@, O ) ,  (4.20) JOW 
u(x ,  y) dy = T ( X ,  0) -y(x, - W ) .  (4.21) 
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Initially (at T = 0) the height q(0,y) is antisymmetric with the boundary values 
&- tanh W (see (2.23)). Hence- 

FL(0) = FR(0) = tanh W. (4.22) 

At T = 0 this fluid consists entirely of new fluid, but for T > 0 or x + 0 this will not 
generally be the case. The ultimate configuration of ~ ( 0 ,  y) for T % 0 suggested in 
figure 9 corresponds to:  

FL(0) = 2 tanh W FR(0) = 0. (4.23) 

For intermediate times and locations x =!= 0, the relative fluxes FL(x), F,(z), and the 
fraction of each of those fluxes which is new fluid, must be determined from the 
numerical experiments. A plot of new and total (old plus new) fluid flux a t  T = 25 in 
bhe very wide (2W = 25) channel case is shown in figure 20. Flux of new fluid 
decreases monotonically in x on both sides of the channel, as the nose and wedge 
regions narrow. A t  x = 0, the down-channel flux of new fluid in the left-hand portion 
of the channel is equal to or greater than its counterpart in the right-hand region. 
This attests to the power of the self advection dynamics, which continue to draw fluid 
up the left-hand boundary long after the linear adjustment has taken place. 

4.5. Xtrongly nonlinear cases 

Though the contour dynamical algorithm used here is convenient for small 
amplitude, inviscid motions it cannot be employed for strongly nonlinear (6 9 0) 
dynamics. As a check on the relevance of our contour dynamical results to such a 
strongly nonlinear case, we compared results for the intermediate channel width with 
results from a primitive equation model using the fully nonlinear shallow-water 
equations. While the shallow-water model precludes deep-water dispersive effects 
which must arise for very large amplitudes, such effects are considered a minor 
perturbation on the advective evolution which is our primary focus here. The 
staggered grid of Sadourney (1975) was employed for the numerical integration. This 
scheme has the desirable property of enstrophy conservation a t  small amplitudes. 
Initial conditions in the primitive equation model mimicked the initial conditions of 
the Gill problem, with a state of rest everywhere and a discontinuity in surface height 
spanning the channel a t  x = 0. As with other primitive equation models, it was 
necessary to include a non-trivial damping term (Laplacian friction in this case). To 
eliminate the resulting leakage of relative vorticity from the walls, a ‘superslip ’ 
boundary condition was employed for the channel walls (normal gradient of relative 
vorticity = 0 a t  each wall). Runs with a ‘no-slip’ boundary condition on each wall 
were also tested, to ascertain how boundary friction (e.g. as experienced in 
laboratory experiments) would affect the results. In  each case, the radiation 
boundary condition of Camerlengo & O’Brien (1980) was employed for the ends of the 
channel. 

Results a t  T = 5.0 are compared in figure 21 (a ,  b)  for the contour dynamical run 
(€-to) ws. a strongly nonlinear primitive equation, ‘superslip’ run ( B  = 0.33) in a 
channel where 2W = 5. Agreement is strikingly good for both the location of the 
potential vorticity boundary (smeared out by Laplacian friction in the primitive 
equation case) and the velocity field, although the fluid in the centre of the channel 
has translated further downstream in the E = 0.33 case. With a ‘no-slip’ boundary 
condition, potential vorticity is no longer well conserved near the walls (figure 21c). 
The left-hand jet separates from that wall, defeating the tendency for downstream 
propagation of a left-hand ‘nose ’ of new fluid, although the interior jet and interior 
fluid move steadily downstream as in the ’superslip’ and contour dynamical runs. 
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FIGURE 20. Down-channel fluxes of new (low potential vorticity) and total (old plus new) fluid in 
the left (F,) and right (F,) halves of the very wide (2W = 25) channel at 7 = 25, as a function of the 
down-channel coordinate x‘ in the moving frame S’. The position of x = 0 in the fixed frame S is 
indicated. Shown for comparison are the fluxes in the left and right halves due to the advected Gill 
solution (FE and Fg, respectively). 

Another technique for exploring the behaviour of the primitive equations runs, 
relative to  their contour dynamical counterparts, is to track the positions of an 
initially square array of Lagrangian floats. Although it is recognized that properties 
such as potential vorticity will not be exactly conserved following a Lagrangian 
drifter when Laplacian friction is present, such floats can serve as a useful marker of 
the path of the new (lower potential vorticity) fluid in the present case. Float maps 
in this context must be interpreted with caution, as successive strings of floats are 
advected out from their initial locations, leaving no marker for the subsequent fluid 
there. 

Figure 22 exhibits the float tracks for the ‘superslip’ version of the 2W = 5 case, 
with the equivalent values of T .  Floats are placed such that all lie in the region of 
new fluid, just below the line x = 0. Note especially how the new fluid, after travelling 
down-channel along the right-hand wall, pinches off in a manner similar to that seen 
in figure 1 1  (note different 2-scales in these two figures). Float markers rapidly 
disappear from the left-hand wall; hence the fluid front is more difficult to track in 
this region (although one float string does apparently serve this purpose). For the 
narrow channel ‘superslip’ case (figure 23) ,  only small values of 7 can be achieved 
before the entire float array is swept out of the downstream (radiating) boundary of 
the model domain. However, such deformation as is apparent by T = 2.7 is quite 
consistent with that on the right-hand wall in figure 13. 

The float maps for the wide channel (2W = 25) ‘superslip’ case (figure 24a)  nicely 
confirm the penetration of new fluid on both left- and right-hand walls up to T = 41, 
beyond which time the sparseness of floats becomes a problem. It is especially 
important not to interpret the subsequent evolution of the right-hand side as 
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FIGURE 22. Evolution of an initially square array of Lagrangian floats in the intermediate width 
(2W = 5) channel primitive equation run 
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FIGURE 23. Evolution of an initially square array of Lagrangian floats in the narrow width 
(2W = 1) channel primitive equation run. 
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‘pinching-off’ behaviour (as for the 2W = 5 case), as the reduced width of the float- 
rich area on the right-hand wall near the origin is merely an artifact of the limited 
number of floats available to track new fluid. Contour maps of potential vorticity a t  
T = 14 and T = 68 (figure 24b) confirm similar behaviour of the potential vorticity 
front to that shown in figures 4 and 19 for the contour dynamical runs. 

A final set of float maps illustrates the dramatic effect of a ‘no-slip’ boundary 
condition on the primitive equation run for the 2W = 25 case (figure 25a). Not only 
is the penetration of new fluid on the left-hand wall defeated, but such penetration 
on the right-hand wall is considerably slowed relative to the ‘superslip’ or contour 
dynamical (inviscid) case. The right-hand wedge acquires strong negative values of 
relative vorticity, as evidenced by the slow advance of the floats near the wall. Again, 
contours of potential vorticity a t  selected times are exhibited for comparison (figure 
25 b). They reveal a pattern with limited conservation of potential vorticity near each 
wall and arrested penetration of the left-hand front. Overall, these diffusive effects 
result in a velocity structure which is markedly different from that of the inviscid 
runs, and is more similar to that of the linearly adjusted state. 

In the limit of E +  1.0, no shallow water run is possible as the fluid thickness for 
x > 0 vanishes. In  this case the leading wave and fluid fronts must be coincident, and 
a true gravity current would evolve on the right-hand wall. It is unclear precisely 
how the wedgelike and noselike intrusions reported here relate to the ‘wedge’ and 
‘bore’ similarity solutions offered by Stern, Whitehead & Hua (1982) for a boundary- 
trapped gravity current. However, such an idealized gravity current should have 
negative relative vorticity (i.e. stronger down-channel flow away from the wall), just 
as was found for the new fluid intrusions in our contour dynamical runs. Hence we 
have explored a dynamical regime with elements of both Kelvin wave and boundary- 
trapped gravity current dynamics, the latter serving as an intermediate step before 
a final configuration of surface height and velocity is established. 

5. Conclusions 
Steady flows in a channel have, a t  one extreme, hydraulics models and, at  the 

other, models involving ‘arrested waves ’. Hydraulics assumes normally that all of 
the ‘upstream ’ fluid washes down the channel, carrying with it the effect of upstream 
boundary conditions, and establishing a steady flow. Wave models conversely 
assume that flow pathways are determined by group velocity, and the developed flow 
may occupy only a small fraction of the width of the domain, Slow ( B  f ’) advective 
adjustment can result in the evolution of fluid states intermediate between those 
considered by linear wave and hydraulic models. For the case of a wide (3- A )  
rotating channel with an initial step discontinuity in surface height, such nonlinear 
effects are capable of transporting fluid along both walls, rather than just the one 
supporting a downstream travelling Kelvin wave. In narrower channels ( -  A )  a very 
narrow (<< A ) ,  coherent mass of low potential vorticity fluid is shot downstream 
ahead of its source. Ultimately the low potential vorticity fluid is expected to wash 
downstream all across the channel for arbitrary channel width (here demonstrated 
for widths up to l O A ) ,  i.e. the two walls of the channel must eventually communicate 
with one another. The time required for significant communication appears to 
increase exponentially with channel width. Such adjustments appear even in 
strongly nonlinear cases, where the advective motions occur on timescales of order 
f l .  The destruction of vorticity near each wall by friction and diffusion can make 
drastic changes to these conclusions, defeating especially the transport of fluid along 
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that wall not supporting a downstream travelling Kelvin wave. It is probably this 
feature, along with the impressive short-time behaviour of the linear wave 
adjustment, that dominates the numerical and laboratory experiments in the 
literature. 
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Appendix. Determination of the free-surface elevation of the wave-adjusted 
flow 

The free-surface elevation of the wave-adjusted steady state satisfies 

v2rlo-90 = sgnx (IYl < W), (A 1) 

v0 = tanh W (y = + W).  (A 2) 

Define the asymptotic but discontinuous particular solution 

- 1 +sech We-” 
I.={ 1-sech We” (z < 0 ) ,  

(z > 0) ,  

= - sinh y sech W + sgn x( - 1 + cosh y sech W). (A 3) 

Then 7 - T* for 1x1 9 1. Write qo = q * + p ,  so p satisfies the homogeneous forms of 
(A 1) and (A 2).  Since vo and avo/i3x are continuous across x = 0, p z  is continuous and 

@] = -[?;r*] = 2-2sech Wcosh y, (A 4) 
where [ ] denotes the jump in the enclosed quantity across x = 0. As [7*] is even in 
y and vanishes a t  y = W, it possesses a Fourier cosine expansion with only the odd 

4 O3 (-l)mcosa,y 

W m - 0  a m ( 1  + a 3  ’ 

terms appearing, namely, 
-[q*I =- c 

where a, = (m + t )  K/ W. Thus 

Adding q* gives the form of vo quoted in (2.20). 
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